
237

Video and audio:
playing media
in the browser

Clearly, the web is about more than text, but until HTML5 came along we had no

built-in way to play audio and video in the HTML standard. Instead, browsers had to

depend on third-party applications known as plug-ins.

 Not so today. The web is increasingly being used as a replacement for traditional

broadcast media. Services like Netflix, YouTube, Spotify, last.fm, and Google Music

seek to replace your DVD and CD collections with online players. With HTML5, video

and audio become first-class citizens of web content. Rather than handing responsi-

bility for playing media to a third-party application, it’s played within the browser,

allowing you to control and manipulate media from within your web application.

This chapter covers

■ Navigating the cross-browser and cross-device

issues inherent in video

■ Converting between different audio and

video formats

■ Controlling video playback

■ Performing video post-processing in the

browser using the <canvas> element

■ Integrating video playback with other content

238 CHAPTER 8 Video and audio: playing media in the browser

 In this chapter you’ll learn to use HTML5’s Media Element Interface while build-

ing a video telestrator jukebox. A telestrator, made famous by U.S. football coach and

announcer John Madden, allows the user to draw directly onto a playing video; the

term comes from television sports broadcasting (television + illustrate = telestrate).

As you move through the chapter, you’ll do the following:

■ Build the basic jukebox framework

■ Add videos to the web page with HTML5

■ Use the HTMLMediaElement interface to load and play videos based on user

selection

■ Attach event handlers to provide user feedback, enable UI options, and start

playback

■ Use the <source> element to provide multiple videos in different formats to

support all browsers

■ Control video from JavaScript with the HTMLMediaElement interface

■ Combine playing video with other web content

We’ll show you the application and help you get your prerequisites in order, and then

we’ll get you started building the basic video player.

8.1 Playing video with HTML5

Placing a video in HTML5 markup is simple, and no more complex for any given

browser than placing an image. In this section you’ll take full advantage of the built-

in browser support to build the simplest possible video jukebox.

 We’ll show you what the finished product will look like and help you get your pre-

requisites aligned. Next, you’ll lay the application’s basic framework and then use the

<video> element to add videos to the web page.

8.1.1 Application preview and prerequisites

The sample player you’ll be building in this chapter is shown in figure 8.1.

Why build the video telestrator jukebox?

These are the benefits:

■ You’ll learn to use the <video> element to add a video to a web page.

■ You’ll see how to control video playback with JavaScript using Media Element

Interface.

■ You’ll discover how to support different browsers with different file formats using

the <source> element.

239Playing video with HTML5

The figure shows the four main components of the player:

■ The video itself, showing American football action

■ Some artistic telestration saying “HTML5 in Action”

■ A playlist of videos to choose from on the right side

■ A toolbar to control the playback below the video

WHICH BROWSER TO USE?

For this section please use Chrome, Safari, or Internet Explorer. For the time being

you’ll have to avoid Firefox and Opera because of the cross-browser video file format

issues. We’ll discuss these issues, and perform a few tricks to make everything work in

Firefox and Opera, in section 8.1.3.

PREREQUISITES

Before you begin, download the set of sample videos from this book’s website and the

latest version of jQuery from http://jquery.com/. Put the videos in a directory of the

same name in your working directory, and place jQuery in the working directory itself.

<video>/<audio> elements 3 3.5 9 10.5 4.0

Figure 8.1 The finished telestrator jukebox application, showing a video, some

artistic telestration, a playlist of videos to choose from, and, underneath the video, a

toolbar for controlling the playback

http://jquery.com/

240 CHAPTER 8 Video and audio: playing media in the browser

You’ll also need the requestAnimationFrame polyfill from https://gist.github.com/

1579671 for the later sections. The code at that URL will go in the script section when

you start animating in section 8.4.1.

 With those preliminaries out of the way, you’re ready to build the framework.

8.1.2 Building the basic jukebox framework

Listing 8.1 shows the framework around which you’ll be building the application. It

creates a simple layout and has placeholders for the video player and the playlist, the

major components you’ll be adding in the later sections.

 Create a new HTML page in your working directory called index.html, with the fol-

lowing listing as its contents.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">
 <title>Video Telestrator Jukebox</title>
 <script src="jquery-1.8.2.min.js"></script>
 <script src="raf-polyfill.js"></script>
 <style>
 body {
 font-family: sans-serif;
 border: 0;
 margin: 0;
 padding: 0;
 }
 header {
 text-align: center;
 }
 #player {
 display: table;
 width: 100%;
 padding: 4px;
 }
 #player > div, #player > nav {
 display: table-cell;
 vertical-align: top;
 }

 #player canvas {
 display: block;
 }
 #player menu, #player label {
 display: inline-block;
 padding: 0;
 }
 input[type=number] {
 width: 36px;
 }
 </style>

Listing 8.1 index.html—Basic jukebox layout

Latest version
of jQuery.

requestAnimationFrame polyfill from
https://gist.github.com/1579671.

Basic CSS to lay
everything out.

https://gist.github.com/1579671
https://gist.github.com/1579671
https://gist.github.com/1579671

241Playing video with HTML5

</head>

<body>

 <header>
 <h1>HTML5 Video Telestrator Jukebox</h1>
 </header>
 <section id="player">
 <div>
 <!-- The video will appear here-->
 </div>
 <nav>
 <h2>Playlist</h2>

 <!-- The video playlist will appear here-->

 </nav>
 </section>
</body>

</html>

Now, with the foundation laid, let’s get to the fun parts of the application by adding a

video to the page.

8.1.3 Using the video element to add videos to web pages

The goal in designing HTML5’s <video> element was to make the embedding of video

within a web page as straightforward as embedding an image. Although you’ll encoun-

ter additional complexities due to video file formats being more feature-rich than

image formats, the design goal has been attained. Figure 8.2 shows the <video> ele-

ment applied in Google Chrome.

 The next listing shows all of the code required to display the video in figure 8.2. As

you can see, it’s not complicated. Insert this code in place of the first comment in list-

ing 8.1, and refresh the page to reproduce figure 8.2.

You’ll add a <video>
element here in
section 8.1.3.

You’ll add a
playlist here in
section 8.2.

Figure 8.2 Basic

HTML5 video player

in Chrome

Core API

242 CHAPTER 8 Video and audio: playing media in the browser

<video src="videos/VID_20120122_133036.mp4"
 controls

 width="720" height="480">
 Your browser does not support the video element, please
 try downloading
 the video instead
</video>

You used four attributes, src, controls, width, and height, in the code in listing 8.2.

Table 8.1 summarizes those attributes; for a full list of attributes see appendix B.

For your application, displaying a single video isn’t enough. You need more videos

and the ability to switch between them and control their playback in response to user

commands. To do this you’ll need to learn about the HTMLMediaElement interface—

a collection of attributes and functions for both <video> and <audio> elements,

which can be used to start playing the media, pause the media, and change the vol-

ume, among other things. We’ll tackle that in the next section.

Listing 8.2 index.html—Embed a video

Table 8.1 Media element attributes

Attribute Description

src The video to play.

controls A Boolean attribute. If you add it, the browser will provide a standard set of controls

for play/pause/seek/volume, and so on. If you leave the attribute out, your code

has to control the player (see section 8.3.2).

width The width of the media (video only).

height The height of the media (video only).

Where’s the audio?

Perhaps you’ve already noticed, but in this chapter you’ll be considering and using

the <video> element rather than the <audio> element. This isn’t because the

<audio> element is less important (it isn’t) or because it’s more complex (it’s not)

but because this is a book. Although a book may not be an ideal medium for present-

ing moving pictures, it’s an even worse one for invisible sound. But both elements

share a single API, the HTMLMediaElement interface, and it’s this API that’s the focus

of this chapter. The only differences between the <audio> and <video> elements are

related to visual properties. The <video> element allows you to specify a width and

a height for the media, the <audio> element does not.

The src attribute specifies
the video to display, like
the element.

Show the
standard

play/pause/
fast forward

controls to
the user.

The width and
height don’t
have to match
the video—the
browser will
scale everything
to fit, as with
images.

Browsers that don’t support the <video>
element will display the fallback content.

Core API

243Controlling videos with the HTMLMediaElement interface

8.2 Controlling videos with the HTMLMediaElement interface

Now that you have a video playing, let’s start implementing the jukebox feature by

allowing users to select from a list of videos, which will appear alongside the <video>

element (figure 8.3).

 Over the next two sections you’ll work through five steps, writing code that allows

you to do the following:

■ Step 1: Load a list of videos.

■ Step 2: Start a video when selected.

■ Step 3: Change between videos.

■ Step 4: Use event handlers to handle the changing of video in greater detail.

■ Step 5: Provide multiple video formats to support all browsers.

As we mentioned, in this section you’ll be making use of the HTMLMediaElement

interface from JavaScript; as usual with HTML5, the markup only gets you so far. Most

of the interesting stuff is done with JavaScript!

STEP 1: LOAD A LIST OF VIDEOS

First, let’s hardcode a list of videos into the playlist and hook up everything so that

when a user clicks a video it starts playing. Listing 8.3 shows the markup for the play-

list; insert it in place of the second comment placeholder in listing 8.1. In a real appli-

cation you’d almost certainly be generating this list dynamically, but we’re going to

avoid requiring backend code in this chapter.

Figure 8.3 A video playing in IE9 selected from the playlist. The videos have been

taken directly off of author Rob Crowther’s mobile phone, default names included.

244 CHAPTER 8 Video and audio: playing media in the browser

<h2>Playlist</h2>
<ul class="playlist">
 VID_20120122_133036.mp4
 VID_20120122_132933.mp4
 VID_20120122_132348.mp4
 VID_20120122_132307.mp4
 VID_20120122_132223.mp4
 VID_20120122_132134.mp4

STEP 2: START A VIDEO WHEN SELECTED

In order to start a video when the user clicks one of the list items, you’ll need to know

one property and one method of the HTMLMediaElement interface, both of which

are summarized in table 8.2.

STEP 3: CHANGE BETWEEN VIDEOS

You’ll also need the change_video function, shown in the next listing. As you can see,

it uses both the src property and the play() method to change the video being

played. Include the listing in a script block at the end of your code’s head section.

function change_video(event) {

 var v = $(event.target).text().trim();

 var p = $('#player video:first-of-type')[0];

 p.src = 'videos/' + v;

 p.play();

}

$(document).ready(

 function() {

 $('.playlist').bind('click', change_video);

 }

)

Listing 8.3 index.html—Markup for the video playlist

Table 8.2 HTMLMediaElement interface

Attribute/method Description

.src Read/write, reflects the value of the src attribute; use it to select a new video.

.play() Start playing the current media.

Listing 8.4 index.html—Handling the user clicking the playlist

Slot this code in the placeholder
section in listing 8.1.

The videos listed are available
in the book’s code download.

Core API

The function
that handles

the click
events on

the playlist.

The video name is the text content of
the clicked-on item; if you want a more
user-friendly interface, you could put in
a more readable text label and have the
filename on a data-* attribute.

Get a reference to the
<video> element.

Set the src value to
the new filename.

Start playing
the file.

Bind the handler to the
click event of the playlist.

245Controlling videos with the HTMLMediaElement interface

STEP 4: USE EVENT HANDLERS TO HANDLE THE CHANGING OF VIDEO IN GREATER DETAIL

In the previous code, the src of the <video> element is set, and the play() method is

called immediately. This works well because all of the videos are relatively small and

everything is being loaded off the local disk. If you had a much larger video, it’s likely that

not enough of it will have loaded to start playback if the play() method is called immedi-

ately, leading to an error. A more reliable approach would be to wait until the video is

loaded before starting to play. The HTMLMediaElement interface includes a number of

events that fire as the media is loading. The events fired during the loading of a media

file are listed in table 8.3 (all of them will fire during the loading of the media).

If you were loading a large media file across the network, then you’d have time to dis-

play a notification to the user as each of these events occurred. In this section you’ll

bind event listeners to each of these events and start the playback on canplaythrough.

But first, let’s look at the network-related information available through the HTMLMedia-

Element interface.

DETERMINING THE STATE OF MEDIA RESOURCES WITH .NETWORKSTATE AND .READYSTATE

The HTMLMediaElement interface includes two useful properties that allow you to deter-

mine the state that the media resource is in: .networkState and .readyState. In a real

application you could use the information provided by these properties to give visual

feedback about the state of the loading media resource; for example, a progress bar or a

loading spinner. Table 8.4 lists the values each property can assume. The .networkState

is similar to the .readyState property on the request object in an XMLHTTPRequest and

the media .readyState corresponds closely to the events listed in table 8.3.

Table 8.3 Media element events

Event Occurs when

loadedmetadata The browser has determined the duration and dimensions of the media

resource and the text tracks are ready.

loadeddata The browser can render the media data at the current playback position for the

first time.

canplay The browser can resume playback of the media but estimates that if playback

were to be started, the media couldn’t be rendered at the current playback rate

up to its end, without having to stop for further buffering of content.

canplaythrough The browser estimates that if playback were to be started, the media could be

rendered at the current playback rate all the way to its end, without having to

stop for further buffering.

Table 8.4 HTMLMediaElement interface properties and values

Property/values Description

.networkState Returns the current network state of the element; the value returned is

one of the four shown next.

 NETWORK_EMPTY Numeric value: 0 (no data yet).

246 CHAPTER 8 Video and audio: playing media in the browser

PLAYING VIDEO ON THE CANPLAYTHROUGH EVENT

The next listing shows a simple example of how to use the HTMLMediaEvent interface

events and investigate the networkState and readyState. Insert this code in place of

the $(document).ready part of listing 8.4.

function play_video(event) {
 event.target.play();
}
function log_state(event) {
 console.log(event.type);
 console.log('networkState: ' + event.target.networkState);
 console.log('readyState: ' + event.target.readyState);
}
$(document).ready(
 function() {
 $('.playlist').bind('click', change_video);
 var v = $('#player video:first-of-type')[0];
 v.addEventListener('loadedmetadata', log_state);
 v.addEventListener('loadeddata', log_state);
 v.addEventListener('canplay', log_state);
 v.addEventListener('canplaythrough', log_state);
 v.addEventListener('canplaythrough', play_video);
 }

)

TRY IT OUT

Apart from the video playing automatically, the previous listing shouldn’t work any dif-

ferently from listing 8.4, which allowed you to switch between videos. But if you open

 NETWORK_IDLE Numeric value: 1 (the network is temporarily idle).

 NETWORK_LOADING Numeric value: 2 (the network is currently active).

 NETWORK_NO_SOURCE Numeric value: 3 (no source has been set on the media element).

.readyState Returns a value that expresses the current state of the element, with

respect to rendering the current playback position.

 HAVE_NOTHING Numeric value: 0 (no data has yet been loaded).

 HAVE_METADATA Numeric value: 1 (enough data has loaded to provide media metadata).

 HAVE_CURRENT_DATA Numeric value: 2 (enough data is available to play the current frame, but

not enough for continuous streaming).

 HAVE_FUTURE_DATA Numeric value: 3 (enough data is available to play several frames into

the future).

 HAVE_ENOUGH_DATA Numeric value: 4 (enough data is available and continuing to become

available that the media can be streamed).

Listing 8.5 index.html—Capturing HTMLMediaElement interface events

Table 8.4 HTMLMediaElement interface properties and values (continued)

Property/values Description

You’ll use this function to start playing the video
as soon as it hits the canplaythrough event; this
replaces p.play() in listing 8.4. (This is functionally
equivalent to adding the autoplay attribute.)

This generic
function will

log some
information
about each

event as
it fires.

Bind all four
events to the
log_state
function.

247Controlling videos with the HTMLMediaElement interface

up your browser’s console, you should see output similar to that shown in the follow-

ing listing (exact values may vary from browser to browser).

loadedmetadata

networkState: 1

readyState: 4

loadeddata

networkState: 1

readyState: 4

canplay

networkState: 1

readyState: 4

canplaythrough

networkState: 1

readyState: 4

Remember that networkState: 1 is NETWORK_IDLE and readyState: 4 is HAVE_ENOUGH

_DATA. With all of the videos on local disk you shouldn’t expect too much else,

although you may see a networkState of 2 on IE. If you have some larger videos

online, you should see some different values in each event.

PROGRESS CHECK!

If you’ve been following along in Chrome, Safari, or IE9 as we recommended at the start

of this chapter, you should now have a simple interface, which allows you to click a list of

videos and see them play. Figure 8.4 shows what you should be seeing; compare your code

to the file index-2.html in the chapter’s code download if you’re having any problems.

Listing 8.6 Console output from listing 8.5

Figure 8.4 What your app should look like in the browser at this point

248 CHAPTER 8 Video and audio: playing media in the browser

USING FIREFOX OR OPERA?

If you’ve tried out the page in Firefox or Opera, you’ve probably seen a gray screen sim-

ilar to the one in figure 8.5, which says “Video format or MIME type is not supported.”

 The issue illustrated in figure 8.5 is that neither Firefox nor Opera supports the

MP4 video format even though they support the <video> element itself.1 But the

<video> and <audio> elements provide a workaround for this issue: It’s possible to

specify multiple media files by using the <source> element.

8.3 Specifying multiple formats with the <source> element

Each <video> element can have multiple <source> elements as children. Each <source>

specifies a video, and the browser tries each one in turn and uses the first video format it

can support. Figure 8.6 shows the same video player in Firefox we showed you earlier

after <source> elements have been added, instead of using the src attribute.

STEP 5: PROVIDE MULTIPLE VIDEO FORMATS TO SUPPORT ALL BROWSERS

Now let’s implement. The next listing shows the new markup for the <video> ele-

ment, using child <source> elements. Insert the code in place of the existing <video>

element in your working file.

<video controls

width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4"
 type="video/mp4">
 <source src="videos/VID_20120122_133036.webm"
 type="video/webm">
 Your browser does not support for video element, please

 try downloading
 the video instead
</video>

1 Recent versions of Firefox will play MP4 videos on Windows using the support available in the OS.

Listing 8.7 index.html—Adding the <source> element

Figure 8.5 An MP4 video in Firefox, where video format or MIME type isn’t supported

Core API

The original
.mp4 video.

A version of the video
in .webm format.

249Specifying multiple formats with the <source> element

CODE CHECK!

This is a good time to stop and check your progress in the browser. You can find the

code to this point in the build in the code download, in a file named index-3.html.

Compare your index.html code with that code if you have any problems.

8.3.1 Discovering which video is playing with .currentSrc

With the new code, Firefox will now load the video it’s able to play. This does intro-

duce a problem for your jukebox feature. Before, you were able to set the .src prop-

erty to change the video, but now you need to set the .src differently depending on

what video file the browser selected to play. Unfortunately, you can’t replace all of the

child <source> elements with a new set; to change the playing video you have to set

the .src property.

 To solve this problem you need to know about another property of the HTMLMedia-

Element interface: .currentSrc. This property tells you the filename of the currently

selected media.

 Because all of your video files are consistently named, you can remove the file

extension for all of the elements in the playlist (do this now). Instead of get-

ting the complete filename from the elements, the change_video method can

copy the file extension from the .currentSrc property and use that to compose

the filename of the selected video. The following listing shows the updated

change_video function, which used this approach; use it to replace the existing one

in your file.

Figure 8.6 <video> element in Firefox with multiple sources

Core API

250 CHAPTER 8 Video and audio: playing media in the browser

function change_video(event) {
 var v = $(event.target).text().trim();
 var p = $('#player video:first-of-type')[0];
 var ext = p.currentSrc.slice(
 p.currentSrc.lastIndexOf('.'),
 p.currentSrc.length);
 p.src = 'videos/' + v + ext;
}

Listing 8.8 index.html—Using currentSrc to determine the video type

A workaround for IE9's currentSrc bug

The code in listing 8.8 is straightforward, but you may find that it doesn’t work prop-

erly in IE9. The problem is a bug in IE9: Once a <source> element is added, it imme-

diately takes priority over the src attribute and the currentSrc property of the

<video> element. This means that if you run the app in IE9, then instead of selecting

a new video when you click the playlist, you’ll see the first video repeated.

Another limitation of IE9 is that updating <source> elements with JavaScript has no

effect. If you want to update the playing video in IE9 when you’ve used <source> ele-

ments, then the only workable solution is to replace the entire <video> element. The

following snippet shows just such an approach:

function change_video(event) {
 var v = $(event.target).text().trim();
 var vp = $('#player video:first-of-type');
 var p = vp[0];
 var ext = p.currentSrc.slice(
 p.currentSrc.lastIndexOf('.'),
 p.currentSrc.length);
 var nv = $('<video controls src="videos/' + v + ext + '" ' +
 'width="720" height="480">' +
 'Your browser does not support the video element, please ' +
 'try downloading ' +
 'the video instead</video>');
 vp.parent().append(nv);
 vp.remove();
 nv[0].play();
}.

Fortunately this bug is fixed in IE10. Because of this, and to avoid the code complex-

ity getting in the way of learning about the APIs, not to mention that this approach will

create new issues in other browsers (which will require further workarounds), the rest

of the code in this chapter will ignore this issue. If you’re using IE9, then please check

the code download files for versions that have been fixed to work in IE9 (they have

IE9 in the filename).

The playlist should now contain
only extension-less entries like
VID_20120122_132933.

Slice the file extension from
the value of currentSrc
starting at the last period.

Combine the file extension with
the name to set the new source.

For this workaround you’ll
need a reference to both the
actual <video> element
and the jQuery object.

Instead of
updating
currentSrc,
create a new
<video>
element with
the correct
src attribute.

Add the new <video> element
alongside the current one.

Remove the current <video>
element, leaving only the new one.

251Specifying multiple formats with the <source> element

You now have a working video jukebox, but you probably still have questions:

■ What are these different video formats such as .mp4 and .webm?

■ How many different formats do I need to provide to support all browsers?

■ If I don’t have a particular video in a certain format, how can I convert

between them?

We’ll discuss changing video formats in the next section. Before we do, we want to

answer the first two questions by looking at which browsers support which video and

audio formats; table 8.5 summarizes this information.

As you can see, no single format is universally adopted across all browsers. For broad

desktop support, you need to provide at least two versions of your media: for video at

least WebM/VP8 and MPEG-4/H.264, for audio MP3 and OGG.

 Media format support is something of a contentious issue in the HTML5 world.

The sidebar “Why doesn’t HTML5 mandate a format that all browsers support?”

explains why.

Table 8.5 Browser video and audio format support

Video formats/

codecs

For broad desktop support, you

should provide at least two versions

of your media.

MPEG-4/H.264 3 ~ 9 ~ 3.2 For video, your best bet is to

provide MPEG-4/H.264 and

WebM/VP8, at minimum, to

cover all current browsers.

Ogg/Theora 3 3.6 ~ 10.5 *

WebM/VP8 6 4 * 10.6 *

* IE and Safari will play additional formats if users install the codec within Windows Media Player or QuickTime,

respectively. Currently there’s no compatible Ogg/Theora codec for Windows.

Audio formats/

codecs

MP3 3 ~ 9 ~ 3.2

For audio, we recommend that

you provide MP3 and Ogg, at

minimum, to cover all current

browsers.

AAC 3 ~ 9 ~ 3.2

Ogg 3 3.6 ~ 10.5 *

WAV 3 3.6 ~ 10.5 3.2

* Safari will play additional formats if users install the codec within QuickTime.

Why doesn’t HTML5 mandate a format that all browsers support?

Initially, the HTML5 specification mandated the Ogg/Theora video format. This

seemed like a good choice because it’s an open source format and the codec is

royalty free. But Apple and Microsoft refused to implement Ogg/Theora, preferring

instead the MP4/h.264 combination. MPEG LA, LLC, administers MP4/h.264 and

252 CHAPTER 8 Video and audio: playing media in the browser

8.3.2 Converting between media formats

For practical purposes, what you need to know is how to convert a video in one of the

supported formats to a different format. A tool called a transcoder can convert between

different container formats and encodings. There are several online and download-

able tools that convert individual media files; several are listed in the links and

resources in appendix J. But for batch processing large numbers of files you’ll need to

use a command-line tool. Appendix H explains how to use ffmpeg to transcode the

video files used in this chapter.

 You’re at the point where you can play a video in every browser that supports the

<video> element, thanks to the <source> element. You also know which video formats

you need to provide to support which browsers. Now it’s time to create the telestrator

feature, which will let you draw directly onto the playing video.

8.4 Combining user input with video to build a telestrator

As we mentioned earlier, the telestrator allows the user to draw directly on a playing

video to illustrate the action to the television audience. To create this feature in your

application, you’ll need a way to combine the video with other image data. For this

you’ll use the <canvas> element. You should be familiar with Canvas from chapter 6.

(continued)

sells licenses for encoders and decoders on behalf of companies that hold patents

covering the h.264 codec. (Apple and Microsoft are two such companies.)

Supporters of h.264 argue that Ogg/Theora is technically lower quality, has no hard-

ware support (important on battery-powered devices with low-end CPUs), and is more

at risk from patent trolls because the obvious way to make money out of infringers is

to sue them, whereas submarine patents affecting h.264 can be monetized through

MPEG LA.

Supporters of Ogg/Theora argue that the openness of the web requires an open video

format. Mozilla couldn’t distribute its source code if it contained an h.264 decoder

because then everyone who downloaded the code would require a license from MPEG

LA. Google avoided this issue by splitting its browser into free parts (the open source

Chromium project) and closed parts.

Because the vendors were divided on which format to make standard, and because

one of the goals of HTML5 is to document the reality of the implementation, the

requirement for supporting any particular codec was removed from the specifica-

tion. This isn’t without precedent in the HTML world—the element doesn’t

specify which image formats should be supported. We can see some light at the

end of the tunnel: Google subsequently released the WebM format as open source

with an open license. As the owner of the number-one video site on the web, You-

Tube, and a provider of the Android mobile OS, it’s well-positioned to overcome

h.264’s commercial advantages.

253Combining user input with video to build a telestrator

In that chapter you learned about the drawing capabilities of Canvas to create an

interactive game. In this chapter you’ll concentrate on the general-purpose, image

data-manipulation features to combine images and other content with a video feed.

Your work on the telestrator will happen in three groups of steps:

Let’s start with how to play video through the <canvas> element.

8.4.1 Playing video through the <canvas> element

The first requirement is to be able to modify the video as it’s being played back. You

could do this by layering elements on the page and hiding and showing things at the

required time. If you were stuck using plug-ins to render the video, that would be your

only option for modifying the video from HTML. But the <video> element makes its

data available as images. You can access each frame of the video as it’s ready and treat

it as image data. It’s then quite straightforward to use the <canvas> element to grab

that image data and display it.

STEP 1: ADD THE <CANVAS> ELEMENT

The following listing shows the basic setup required in the markup. The <style> ele-

ment should be placed in the head section of the document, or you can add the rule

to your existing <style> element. The div replaces the existing one, where your

<video> element is located.

In this section, you’ll learn

■ How to use the <canvas> element to play a video

■ How to create controls for video playback (because the <canvas> element ren-

ders the video image data, not the <video> element)

■ How to combine the video on the canvas with other content, such as images

■ How to perform basic image-processing using the <canvas> element

■ How to capture the user’s drawings (telestrations) and add them to the video

during playback

Group 1: Playing video through

a <canvas> element

Group 2: Manipulating video as

it’s playing

Group 3: Building the telestra-

tor feature

■ Step 1: Add the <canvas>
element.

■ Step 2: Grab and display

image data.

■ Step 3: Add markup for

and implement video player

controls.

■ Step 1: Add a frame image to

the video.

■ Step 2: Adjust how the frame and

video combine on the canvas.

■ Step 3: Adjust the opacity of

the video.

■ Step 4: Grayscale the video being

played back.

■ Step 1: Capture mouse

movement.

■ Step 2: Display the cap-

tured path over the video.

■ Step 3: Add a “clear”

button so users can

remove telestrations and

start again.

254 CHAPTER 8 Video and audio: playing media in the browser

<style>

 #player video:first-of-type {
 display: none;
 }
</style>

<div>

 <canvas width="720" height="480"></canvas>
 <video controls
 width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4"
 type="video/mp4">
 <source src="videos/VID_20120122_133036.webm"
 type="video/webm">
 Your browser does not support for the video element, please
 try downloading
 the video instead
 </video>
</div>

STEP 2: GRAB AND DISPLAY IMAGE DATA

Now you need to listen for the play event on the <video> element and use that as a

trigger to start grabbing video frames and rendering on the canvas. The $(docu-

ment).ready in the next listing should replace the existing function you added previ-

ously in listing 8.8.

$(document).ready(
 function() {
 $('.playlist').bind('click', change_video);
 var v = $('#player video:first-of-type')[0];
 var canvas = $('#player canvas:first-of-type')[0];
 var context = canvas.getContext('2d');
 function draw() {
 if(v.paused || v.ended) return false;
 context.drawImage(v,0,0,720,480);
 requestAnimationFrame(draw);
 }
 v.addEventListener('play', draw);
 }
)

Now you’re able to play back the video through the <canvas> element, but you’ll

notice that something is missing. The controls you got for free as part of the <video>

element are no longer accessible now that the video is being played through <canvas>.

The next section deals with creating your own controls.

Listing 8.9 index.html—Adding a <canvas> element to display video

Listing 8.10 index.html—Adjusting the draw() function to use the <canvas> element

CSS is used to hide the
<video> element.

Add a <canvas> element
with the same dimensions
as the video.

The <video> element
remains as it was, although
now that it’s invisible, the
controls parameter and
fallback content aren’t
strictly necessary.

Core API

This part of the
code remains the
same as before.

The draw() function will
draw the video frames
one by one on the canvas;
a closure is used to cache
references to the video
and the canvas context.

If the
video has

stopped
playing,

don’t
do any

additional
work. A recursive call is made to the

draw() function using the
requestAnimationFrame polyfill
(see listing 8.1).Listen for the play event on the <video>

element to kick off the draw function.

255Combining user input with video to build a telestrator

8.4.2 Creating custom video playback controls

In this section you’ll create a simple menu of buttons to control video playback. Fig-

ure 8.7 shows the final effect. Obviously, we’re not aiming to win any points for design

here; it’s the functionality we’re interested in.

STEP 3: ADD MARKUP FOR AND IMPLEMENT VIDEO PLAYER CONTROLS

The simple markup for the controls we’re adding—return to start, slow down play-

back, pause, play, and speed up playback—is shown here; add this code directly after

the <canvas> element.

<menu>

 <button>|<</button>
 <button><<</button>
 <button>||</button>
 <button> > </button>
 <button>>></button>
</menu>

To make the buttons functional, you’ll have to learn about a few more properties and

methods on the HTMLMediaElement interface. A summary of these methods is shown

in table 8.6.

Listing 8.11 index.html—Creating video player controls

Table 8.6 More HTMLMediaElement interface methods

Attribute/method Description

.currentTime Read/write the current position (in seconds) of the playback

.duration The length of the media in seconds

Figure 8.7 Custom

playback buttons

in Opera

Return to start.

Slow down playback.

Pause.

Play.

Speed up playback.

Core API

256 CHAPTER 8 Video and audio: playing media in the browser

With these properties and methods you have enough information to implement the

five buttons. In the $(document).ready function you added in listing 8.10, you’ll need

to bind a handler to the menu, like the one shown next. It can be added anywhere in

that function as long as it’s after the declaration for the v variable. If you’re not sure,

add it at the end.

$('menu').bind('click', function(event) {
 var action = $(event.target).text().trim();
 switch (action) {
 case '|<':
 v.currentTime = 0;
 break;
 case '<<':
 v.playbackRate = v.playbackRate * 0.5;
 break;
 case '||':
 v.pause();
 break;
 case '>':
 v.playbackRate = 1.0;
 v.play();
 break;
 case '>>':
 v.playbackRate = v.playbackRate * 2.0
 break;
 }
 return false;
})

CODE CHECK!

You’ve now restored basic functionality to your video player. The working code to this

point in the chapter is in the file index-5.html in the code download, so you can com-

pare what you’ve written. For extra credit, consider how you might use .currentTime

and .duration in concert with a <meter> element (see section 2.3.3) to reproduce the

seek bar. Otherwise, move on to the next section, where you’ll explore the effects you

can achieve now that playback is occurring through a <canvas> element.

.defaultPlaybackRate The speed, expressed as a multiple of the standard playback speed

of the media

.playbackRate The rate at which the media is currently playing back as a positive

multiple of the standard playback speed of the media (less than 1 is

slower; greater than 1 is faster)

.pause() Pauses the currently playing media

Listing 8.12 index.html—Handler function for the control menu

Table 8.6 More HTMLMediaElement interface methods (continued)

Attribute/method Description

For simplicity, you can use the
text content of the buttons to
determine which one was clicked.

To go back to the start of the
video, set the currentTime to 0.

Repeatedly hitting
the fast or slow
buttons will multiply
the playback rate,
but hitting play will
reset it to 1.

pause() and
play() do

exactly what it
says on the tin.

257Combining user input with video to build a telestrator

8.4.3 Manipulating video as it’s playing

The point of playing the video through the <canvas> element wasn’t to merely repli-

cate the behavior you get for free with the <video> element but to process the video

output. In this section you’ll learn basic techniques for processing the video, ending

up with something that looks like figure 8.8. You’ll use these same techniques in later

sections to build the telestrator.

 Figure 8.8 also shows the result of the next group of four steps you’ll walk through:

■ Group 2: Manipulating video as it’s playing

– Step 1: Add a frame image to the video.

– Step 2: Adjust how the frame and video combine on the canvas.

– Step 3: Adjust the opacity of the video.

– Step 4: Grayscale the video being played back.

STEP 1: ADD A FRAME IMAGE TO THE VIDEO

You learned about drawing images on canvas in chapter 6; the basic approach is the

same for this step. First, you need an image on the page. It can go anywhere inside

the <#player> element (hide it with CSS display: none):

To give users the ability to turn the frame on and off, you’ll need a button in the menu

from listing 8.11:

<button>Framed</button>

Figure 8.8 Grayscale video playback through canvas combined with an image at 90

percent opacity

258 CHAPTER 8 Video and audio: playing media in the browser

Because it’s on the menu, you can take advantage of the existing click-handling code

for that—the additional cases for the switch statement are shown in the following list-

ing—and add them to the handler from listing 8.11.

case 'Framed':
 framed = false;
 $(event.target).text('Frame');
 break;
case 'Frame':
 framed = true;
 $(event.target).text('Framed');
 break;

With this next listing, you need to adjust the draw() function to draw the frame.

var framed = true;
var frame = $('#player img:first-of-type')[0];
//...

function draw() {
 if(v.paused || v.ended) return false;
 context.drawImage(v,0,0,720,480);
 if (framed) {
 context.drawImage(frame,0,0,720,480);
 }
 requestAnimationFrame(draw);
 return true;
}

And that’s it! You should now be able to get a frame to appear over the video playback

at the click of a button. In the next step you’ll learn how to adjust how the two images,

the frame and video, are composed (combined) together on the Canvas.

STEP 2: ADJUST HOW THE FRAME AND VIDEO COMBINE ON THE CANVAS

By default, things you draw on the Canvas layer on top of each other; each new draw-

ing replaces the pixels below it. But it’s possible to make this layering work differently

with the .globalCompositeOperation property of the context.

 Figure 8.9 provides an example of each composition mode available to you.

 To allow you to experiment, we’ve created a <select> element with all of the possi-

ble modes in listing 8.15. The composition operations split the world into two segments:

■ Destination, what’s already drawn

■ Source, the new stuff you’re trying to draw

Add the code from the following listing (place it after the <menu> element you added

in listing 8.11).

Listing 8.13 index.html—Handler for the Frame button

Listing 8.14 index.html—Adjust the draw() function to show the frame

You’ll set up the
framed variable
in listing 8.14.

This is the framed variable you
were promised in listing 8.13.

For brevity, all the other declarations
have been left out; leave them as
they are in your code.

Draw the frame only if
the user has requested it.

The drawImage function is as you
remember it; note that the frame gets
drawn after (on top of) the video.

Core API

259Combining user input with video to build a telestrator

<label>

 Composition:
 <select>
 <option>copy</option>

 <option>destination-atop</option>

 <option>destination-in</option>

 <option>destination-out</option>

 <option>destination-over</option>

 <option>source-atop</option>

 <option>source-in</option>

 <option>source-out</option>

 <option selected>source-over</option>

 <option>lighter</option>

 <option>xor</option>
 </select>
</label>

Listing 8.15 index.html—<select> element for composition mode

Figure 8.9 Canvas

composition modes. The

code used to generate this

figure is in the source code

download in a file called

canvas-composition-

modes.html.

Display the source, where
source and destination overlap.

Display the source in the transparent
parts of the destination.

Add the source only where it overlaps
destination, but put the destination on top.

Set the overlap of destination and source to
transparent; elsewhere display the destination.

Where the two overlap, display the
destination; elsewhere display the source.

Display the source where it overlaps the
destination; show the destination elsewhere.

Add the
source where

it overlaps the
destination,

with the
source on top;
elsewhere, the
destination is
transparent.

Set the destination to transparent. Set the
overlap of source and destination to
transparent; elsewhere display the source.

The default; draw the
new stuff over the old.

Add the source and
destination colors together.

Parts are transparent where both overlap;
elsewhere display destination or source.

260 CHAPTER 8 Video and audio: playing media in the browser

Now, so that your application can respond to changes, you need to bind the <select>

element to an event handler. The next listing has code that replaces your existing

draw() function.

var c_mode = 'source-over';
$('select').bind('change', function(event) {
 c_mode = event.target.value;
})
function draw() {
 if(v.paused || v.ended) return false;
 context.clearRect(0,0,720,480);
 context.globalCompositeOperation = c_mode;
 context.drawImage(v,0,0,720,480);
 if (framed) {
 context.drawImage(frame,0,0,720,480);
 }
 requestAnimationFrame(draw);
 return true;
}

Video isn’t the ideal format to experiment with composition modes because it’s always

a fully opaque image, and in this example it’s taking up all the pixels. But this simple

implementation will allow you to experiment and consider where you might use them

in your own projects.

STEP 3: ADJUST THE OPACITY OF THE VIDEO

The opacity is set with the .globalAlpha property. It should be a value between 0 and

1; in common with CSS, 1 is fully opaque and 0 is completely transparent. In your

application you can add an item to let the user set the value with a number input; add

this code after the <menu> element:

<label>

 Opacity:<input type="number" step="0.1" min="0" max="1" value="1.0">
</label>

As before, you need to attach an event handler to this input and feed the results into

the draw() function through a variable. The following listing has the additional code

to capture the opacity and another new draw() function. Replace the draw() function

from listing 8.15 with this new code (retaining the composition mode binding to

$('select')):

var c_opac = 1;
$('input[type=number]').bind('input', function(event) {
 c_opac = event.target.value;
})
function draw() {
 if(v.paused || v.ended) return false;
 context.clearRect(0,0,720,480);

Listing 8.16 index.html—Change the composition mode in the draw() function

Listing 8.17 index.html—Change the opacity in the draw() function

Create a variable to keep track of the
state as before; saves expensive DOM
lookups in the video playback loop.

You’ve used the JavaScript names in
the select options, so this bit is easy.

If you don’t clear
the canvas, each
successive frame
of the video will
be composited
with the
previous one.

Set the
mode.

Core API

The default opacity
is 1 (fully opaque).

Set the variable when the
user changes the value.

261Combining user input with video to build a telestrator

 context.globalCompositeOperation = c_mode;
 context.globalAlpha = c_opac;
 context.drawImage(v,0,0,720,480);
 if (framed) {
 context.drawImage(frame,0,0,720,480);
 }
 requestAnimationFrame(draw);
 return true;
}

STEP 4: GRAYSCALE THE VIDEO BEING PLAYED BACK

The <canvas> element is also a general-purpose, image-processing tool, thanks to its

.getImageData and .putImageData methods. These methods directly access the array

of pixels making up the canvas. Once you have the pixels, you can implement stan-

dard image-processing algorithms in JavaScript. The next listing is a JavaScript imple-

mentation of an algorithm to turn an image gray. This code can be included anywhere

inside your <script> element.

function grayscale(pixels) {
 var d = pixels.data;
 for (var i=0; i<d.length; i+=4) {
 var r = d[i];
 var g = d[i+1];
 var b = d[i+2];
 var v = 0.2126*r + 0.7152*g + 0.0722*b;
 d[i] = d[i+1] = d[i+2] = v
 }
 return pixels;
};

NOTE The grayscale function in listing 8.18 is adapted from the HTML

Rocks article on image filters; see www.html5rocks.com/en/tutorials/canvas/
imagefilters/ for more details.

With the complex math all safely hidden in a general-purpose function, all that

remains is to apply it to the canvas. Listing 8.19 shows how you’d call the grayscale()

function from within your draw() function. For this to work, you need to declare a

variable grayed alongside the framed one you created in listing 8.14 and set it to an

initial value of false.

context.drawImage(v,0,0,720,480);
if (grayed) {
 context.putImageData(
 grayscale(context.getImageData(0,0,720,480))
 ,0
 ,0
);
}

Listing 8.18 index.html—A function to make an image grayscale

Listing 8.19 index.html—Use the grayscale() function within draw()

Use the variable to set the
opacity within the draw()
function. You can use opacity
to create interesting effects
when used in combination
with the composition mode.

Core API

You have to first draw the video as an image to
the canvas before you can start processing it.

Get the image data from the
canvas and pass it through
the grayscale function.Draw the results back on to the

canvas starting at the top left (0,0).

www.html5rocks.com/en/tutorials/canvas/imagefilters/
www.html5rocks.com/en/tutorials/canvas/imagefilters/

262 CHAPTER 8 Video and audio: playing media in the browser

NOTE The getImageData() method will trigger a security error if you access
the example from a file:// URL. If you run into any problems, try accessing
the file using a local web server. In Chrome there’s also a bug that causes a
security violation when getImageData() is called after an SVG image has been
drawn on the canvas. Check https://code.google.com/p/chromium/issues/
detail?id=68568 for updates.

You will also need a Grayed button inside the menu and a handler in the switch state-

ment. This will work analogously to the Framed button you created in listing 8.13, so

we won’t repeat the code here.

CODE CHECK!

The file index-6.html in the book’s code download is a working version of the code to

this point (but see section 8.3.1 if you’re using IE9).

NOTE Image processing works pixel by pixel, which means it becomes
increasingly more expensive the higher the quality of the video. Unless you’re
building an application to preview video processing results, your users will
usually be grateful if you do expensive real-time processing on the server,
instead of in their browser.

8.4.4 Building the telestrator features

Using the techniques from the previous section of rendering the video through a

<canvas> element and overlaying graphics on that video, you can now add the

telestration feature. The results, demonstrating the artistic abilities of the authors, are

shown in figure 8.10.

Figure 8.10 After

working through this

final section, you’ll be

ready to telestrate!

https://code.google.com/p/chromium/issues/detail?id=68568
https://code.google.com/p/chromium/issues/detail?id=68568

263Combining user input with video to build a telestrator

It will take just three remaining steps to get you there:

■ Group 3: Building the telestrator feature

– Step 1: Capture mouse movement.

– Step 2: Display the captured path over the video.

– Step 3: Add a “clear” button so users can remove telestrations and start again.

STEP 1: CAPTURE MOUSE MOVEMENT

To capture mouse movement, you’ll need to modify your $(document).ready func-

tion to include the following code. It doesn’t matter where you add it; in the down-

loadable example it’s between the initial declarations and the draw() function.

var clickX = new Array();
var clickY = new Array();
var clickDrag = new Array();
var paint = false;

var canvas = $('#player canvas:first-of-type');
var pos = canvas.position();
canvas.bind('mousedown', function(event) {
 var mouseX = event.pageX - pos.left;
 var mouseY = event.pageY - pos.top;
 paint = true;
 addClick(mouseX, mouseY);
}).bind('mousemove', function(event) {
 if(paint){
 var mouseX = event.pageX - pos.left;
 var mouseY = event.pageY - pos.top;
 addClick(mouseX, mouseY, true);
 }
}).bind('mouseup', function(event) {
 paint = false;
}).bind('mouseleave', function(event) {
 paint = false;
});

function addClick(x, y, dragging) {
 clickX.push(x);
 clickY.push(y);
 clickDrag.push(dragging);
}

NOTE To keep the draw() function simple, in this section we’ve removed the
code and buttons for Grayed and Framed. Leaving them in your code won’t
harm anything, but bear this in mind as you follow the instructions to replace
and include code in this section.

STEP 2: DISPLAY THE CAPTURED PATH OVER THE VIDEO

The next step is to display the path within the draw() function. The following listing

has yet another new draw() function.

Listing 8.20 index.html—Capturing the mouse movement

Set up global variables
to record the movement
of the mouse.

This
variable

determines
whether

you’re
currently
recording

mouse
movements.

You are now using jQuery to
attach event handlers to the
canvas, so you will use the jQuery
reference in code rather than the
DOM reference as before.
Remember to update the
assignment which gets the context
to use canvas[0] instead of canvas.

Cache the position of the <canvas>
element on the page so you don’t
have to do expensive DOM queries.

When the user presses the mouse
button, set the paint variable to true
and record the initial position with
the addClick function.

As the user
moves the

mouse
around, and

if you’re
currently
painting,

add further
positions.

If the user releases the button
or moves off the canvas, set the
paint variable to false.

The addClick function
populates the variables created
in the first step in this listing.

264 CHAPTER 8 Video and audio: playing media in the browser

function draw() {

 if(v.paused || v.ended) return false;

 context.clearRect(0,0,720,480);
 context.globalCompositeOperation = c_mode;
 context.globalAlpha = c_opac;
 context.drawImage(v,0,0,720,480);
 context.strokeStyle = "#ffff00";
 context.lineJoin = "round";
 context.lineWidth = 8;
 for(var i=0; i < clickX.length; i++) {
 context.beginPath();
 if(clickDrag[i] && i){
 context.moveTo(clickX[i-1], clickY[i-1]);
 } else {
 context.moveTo(clickX[i]-1, clickY[i]);
 }
 context.lineTo(clickX[i], clickY[i]);
 context.closePath();
 context.stroke();
 }
 requestAnimationFrame(draw);
 return true;
}

STEP 3: ADD A CLEAR BUTTON SO USERS CAN REMOVE TELESTRATIONS AND START AGAIN

As a final step you need to add a Clear button so users can remove their telestrations

and start again. An easy place to put this is in the controls menu you already have, by

adding another button:

<button>Clear</button>

The new case for your big switch statement is shown in the next listing.

case 'Clear':
 clickX = new Array();
 clickY = new Array();
 clickDrag = new Array();
 paint = false;
 break;

With that you should have a fully functioning video jukebox telestrator and be well on

your way to adding your own garish yellow annotations to the videos of your choice.

Figure 8.11 shows the authors’ feeble attempt at a John Madden impersonation along

with the Clear button ready to consign that attempt to history.

CODE CHECK!

In the code download you’ll find a working version of the code from this section in

the file index-9.html. There’s also an index-10.html file, which includes the code from

Listing 8.21 index.html—Modifying the draw() function to show the path

Listing 8.22 index.html—Process the clear action

Note that to keep things simple, if the
video is paused, nothing will be drawn,
even though new telestrations will
continue to be recorded.

We will telestrate in
a nice, visible yellow.

Loop through the coordinates
stored in the path.

Special handling for
the first coordinate
because you can’t
access element <-1>
of an array.

Reset all the
stored path data.

Stop capturing
new drawing data.

265Summary

this section as well as the Grayed and Framed functionality from the previous section

we took out to simplify the listings.

8.5 Summary

In this chapter you’ve learned how HTML5 makes it as straightforward a process to

add video and audio to web pages as it is to add images. You’ve taken the news of

browser incompatibilities in format support in stride and learned how to convert

between video formats, and you’ve learned how to control media elements with

JavaScript. The added bonus of having video within HTML5 is that you can use it as

input for other content, in particular the <canvas> element. You’ve also learned how

to combine video with images and, finally, how to combine it with live drawing. We

hope that in addition to all the technical knowledge you’ve gained, you’ve also

thought of ideas on how to incorporate media within your web applications, as well as

playing media on your page.

 In the next chapter, you’ll continue to learn about exciting visual effects you can

create with HTML5 as you learn about WebGL. The WebGL format allows you direct

access to the computer’s graphics hardware from JavaScript, raising the possibility of

implementing real 3D games and data visualizations.

Figure 8.11 The finished application in Firefox

Chapter 9 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined

in this table.

Topic Description, methods, and so on Page

Engine creation Creating a WebGL engine from scratch

■ Time-saving scripts

■ Basic engine pattern

■ Default entity class

■ Helper methods

274

277

279

280

Graphics cards Interacting with a graphics card

■ OpenGL

■ Creating shaders

■ Attaching 3D data to entities

■ Outputting shapes

■ Matrices usage

282

284

283

288

288

WebGL app Putting everything together to create an app

■ 2D triangle in 3D

■ 3D basics

■ Large complex polygons

■ Cubes

■ Particle generation

296

297

300

305

308

Core API

